Analysis of Synaptic Weight Distribution in an Izhikevich Network

نویسندگان

  • Li Guo
  • Zhijun Yang
  • Qingbao Zhu
چکیده

Izhikevich network is a relatively new neuronal network, which consists of cortical spiking model neurons with axonal conduction delays and spike-timingdependent plasticity (STDP) with hard bound adaptation. In this work, we use uniform and Gaussian distributions respectively to initialize the weights of all excitatory neurons. After the network undergoes a few minutes of STDP adaptation, we can see that the weights of all synapses in the network, for both initial weight distributions, form a bimodal distribution, and numerically the established distribution presents dynamic stability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experiments on the effect of synaptic disruption on polychronous group formation: detailed methods and results

Izhikevich (2006a) claims that groups of strongly connected neurons known as polychronous neural groups (PNGs) could provide the basis for memory in the brain. Polychronous groups exist as spatio-temporal patterns of connection lengths and weights; when activated by a matching input pattern, they are able to produce a causal chain of firing events that is not synchronous but is nevertheless pre...

متن کامل

Enhanced polychronization in a spiking network with metaplasticity

Computational models of metaplasticity have usually focused on the modeling of single synapses (Shouval et al., 2002). In this paper we study the effect of metaplasticity on network behavior. Our guiding assumption is that the primary purpose of metaplasticity is to regulate synaptic plasticity, by increasing it when input is low and decreasing it when input is high. For our experiments we adop...

متن کامل

Role of STDP in regulation of neural timing networks in human: a simulation study

Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...

متن کامل

Role of STDP in regulation of neural timing networks in human: a simulation study

Many physiological events require an accurate timing signal, usually generated by neural networks called central pattern generators (CPGs). On the other hand, properties of neurons and neural networks (e.g. time constants of neurons and weights of network connections) alter with time, resulting in gradual changes in timing of such networks. Recently, a synaptic weight adjustment mechanism has b...

متن کامل

Weakly Pulse - Coupled Oscillators , FM Interactions , Synchronization , and Oscillatory

| We study pulse-coupled neural networks that satisfy only two assumptions: each isolated neuron res periodically, and the neurons are weakly connected. Each such network can be transformed by a piece-wise continuous change of variables into a phase model, whose synchronization behavior and oscillatory associative properties are easier to analyze and understand. Using the phase model, we can pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013